Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(1): e1009246, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33493182

RESUMO

Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infects cells by binding to the host cell receptor ACE2 and undergoing virus-host membrane fusion. Fusion is triggered by the protease TMPRSS2, which processes the viral Spike (S) protein to reveal the fusion peptide. SARS-CoV-2 has evolved a multibasic site at the S1-S2 boundary, which is thought to be cleaved by furin in order to prime S protein for TMPRSS2 processing. Here we show that CRISPR-Cas9 knockout of furin reduces, but does not prevent, the production of infectious SARS-CoV-2 virus. Comparing S processing in furin knockout cells to multibasic site mutants reveals that while loss of furin substantially reduces S1-S2 cleavage it does not prevent it. SARS-CoV-2 S protein also mediates cell-cell fusion, potentially allowing virus to spread virion-independently. We show that loss of furin in either donor or acceptor cells reduces, but does not prevent, TMPRSS2-dependent cell-cell fusion, unlike mutation of the multibasic site that completely prevents syncytia formation. Our results show that while furin promotes both SARS-CoV-2 infectivity and cell-cell spread it is not essential, suggesting furin inhibitors may reduce but not abolish viral spread.


Assuntos
Fusão Celular , Furina/genética , Glicoproteína da Espícula de Coronavírus/química , Internalização do Vírus , Animais , COVID-19 , Sistemas CRISPR-Cas , Chlorocebus aethiops , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Estrutura Terciária de Proteína , SARS-CoV-2 , Serina Endopeptidases , Células Vero
2.
J Cell Biol ; 219(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32344433

RESUMO

In addition to the classical pathway of secretion, some transmembrane proteins reach the plasma membrane through alternative routes. Several proteins transit through endosomes and are exported in a Rab8-, Rab10-, and/or Rab11-dependent manner. GRAFs are membrane-binding proteins associated with tubules and vesicles. We found extensive colocalization of GRAF1b/2 with Rab8a/b and partial with Rab10. We identified MICAL1 and WDR44 as direct GRAF-binding partners. MICAL1 links GRAF1b/2 to Rab8a/b and Rab10, and WDR44 binds Rab11. Endogenous WDR44 labels a subset of tubular endosomes, which are closely aligned with the ER via binding to VAPA/B. With its BAR domain, GRAF2 can tubulate membranes, and in its absence WDR44 tubules are not observed. We show that GRAF2 and WDR44 are essential for the export of neosynthesized E-cadherin, MMP14, and CFTR ΔF508, three proteins whose exocytosis is sensitive to ER stress. Overexpression of dominant negative mutants of GRAF1/2, WDR44, and MICAL1 also interferes with it, facilitating future studies of Rab8/10/11-dependent exocytic pathways of central importance in biology.


Assuntos
Caderinas/genética , Proteínas Ativadoras de GTPase/genética , Metaloproteinase 14 da Matriz/genética , Proteínas dos Microfilamentos/genética , Oxigenases de Função Mista/genética , Proteína rhoA de Ligação ao GTP/genética , Animais , Membrana Celular/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Endossomos/genética , Exocitose/genética , Células HeLa , Humanos , Camundongos , Ligação Proteica/genética , Transporte Proteico/genética , Proteínas rab de Ligação ao GTP/genética
3.
Nat Cell Biol ; 20(9): 1023-1031, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30061681

RESUMO

Endocytosis mediates the cellular uptake of micronutrients and the turnover of plasma membrane proteins. Clathrin-mediated endocytosis is the major uptake pathway in resting cells1, but several clathrin-independent endocytic routes exist in parallel2,3. One such pathway, fast endophilin-mediated endocytosis (FEME), is not constitutive but triggered upon activation of certain receptors, including the ß1 adrenergic receptor4. FEME activates promptly following stimulation as endophilin is pre-enriched by the phosphatidylinositol-3,4-bisphosphate-binding protein lamellipodin4,5. However, in the absence of stimulation, endophilin foci abort and disassemble after a few seconds. Looking for additional proteins involved in FEME, we found that 20 out of 65 BAR domain-containing proteins tested colocalized with endophilin spots. Among them, FBP17 and CIP4 prime the membrane of resting cells for FEME by recruiting the 5'-lipid phosphatase SHIP2 and lamellipodin to mediate the local production of phosphatidylinositol-3,4-bisphosphate and endophilin pre-enrichment. Membrane-bound GTP-loaded Cdc42 recruits FBP17 and CIP4, before being locally deactivated by RICH1 and SH3BP1 GTPase-activating proteins. This generates the transient assembly and disassembly of endophilin spots, which lasts 5-10 seconds. This mechanism periodically primes patches of the membrane for prompt responses upon FEME activation.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Endocitose , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Ligação a Ácido Graxo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Antígenos de Histocompatibilidade Menor/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ratos , Transdução de Sinais , Fatores de Tempo , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
4.
Nat Cell Biol ; 20(10): 1229, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30127497

RESUMO

In the version of this Letter originally published, the name of co-author Safa Lucken-Ardjomande Häsler was coded wrongly, resulting in it being incorrect when exported to citation databases. This has been corrected, though no visible changes will be apparent.

5.
Cell ; 174(2): 325-337.e14, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-29887380

RESUMO

Multiple proteins act co-operatively in mammalian clathrin-mediated endocytosis (CME) to generate endocytic vesicles from the plasma membrane. The principles controlling the activation and organization of the actin cytoskeleton during mammalian CME are, however, not fully understood. Here, we show that the protein FCHSD2 is a major activator of actin polymerization during CME. FCHSD2 deletion leads to decreased ligand uptake caused by slowed pit maturation. FCHSD2 is recruited to endocytic pits by the scaffold protein intersectin via an unusual SH3-SH3 interaction. Here, its flat F-BAR domain binds to the planar region of the plasma membrane surrounding the developing pit forming an annulus. When bound to the membrane, FCHSD2 activates actin polymerization by a mechanism that combines oligomerization and recruitment of N-WASP to PI(4,5)P2, thus promoting pit maturation. Our data therefore describe a molecular mechanism for linking spatiotemporally the plasma membrane to a force-generating actin platform guiding endocytic vesicle maturation.


Assuntos
Citoesqueleto de Actina/fisiologia , Proteínas de Transporte/metabolismo , Clatrina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Membrana Celular/química , Membrana Celular/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Endocitose , Células HeLa , Humanos , Lipossomos/química , Lipossomos/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Microscopia de Fluorescência , Modelos Moleculares , Mutagênese Sítio-Dirigida , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/química , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Domínios de Homologia de src
6.
Cell Rep ; 23(7): 2026-2038, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29768202

RESUMO

The endoplasmic reticulum (ER) is a complex network of sheets and tubules that is continuously remodeled. The relevance of this membrane dynamics is underscored by the fact that mutations in atlastins (ATLs), the ER fusion proteins in mammals, cause neurodegeneration. How defects in this process disrupt neuronal homeostasis is unclear. Using electron microscopy (EM) volume reconstruction of transfected cells, neurons, and patient fibroblasts, we show that hereditary sensory and autonomic neuropathy (HSAN)-causing ATL3 mutants promote aberrant ER tethering hallmarked by bundles of laterally attached ER tubules. In vitro, these mutants cause excessive liposome tethering, recapitulating the results in cells. Moreover, ATL3 variants retain their dimerization-dependent GTPase activity but are unable to promote membrane fusion, suggesting a defect in an intermediate step of the ATL3 functional cycle. Our data show that the effects of ATL3 mutations on ER network organization go beyond a loss of fusion and shed light on neuropathies caused by atlastin defects.


Assuntos
Retículo Endoplasmático/metabolismo , GTP Fosfo-Hidrolases/genética , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Mutação/genética , Animais , Células COS , Chlorocebus aethiops , Retículo Endoplasmático/ultraestrutura , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Hidrólise , Fusão de Membrana , Camundongos Endogâmicos C57BL , Proteínas Mutantes/metabolismo , Neurônios/metabolismo , Neurônios/ultraestrutura , Multimerização Proteica
7.
Traffic ; 19(1): 44-57, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28972287

RESUMO

Expression of Eph receptors and their ligands, the ephrins, have important functions in boundary formation and morphogenesis in both adult and embryonic tissue. The EphB receptors and ephrinB ligands are transmembrane proteins that are expressed in different cells and their interaction drives cell repulsion. For cell repulsion to occur, trans-endocytosis of the inter-cellular receptor-ligand EphB-ephrinB complex is required. The molecular mechanism underlying trans-endocytosis is poorly defined. Here we show that the process is clathrin- and Eps15R-mediated using Co115 colorectal cell lines stably expressing EphB2 and ephrinB1. Cell repulsion in co-cultures of EphB2- and ephrinB1-expressing cells is significantly reduced by knockdown of Eps15R but not Eps15. A novel interaction motif in Eps15R, DPFxxLDPF, is shown to bind directly to the clathrin terminal domain in vitro. Moreover, the interaction between Eps15R and clathrin is required for EphB2-mediated cell repulsion as shown in a rescue experiment in the EphB2 co-culture assay where wild type Eps15R but not the clathrin-binding mutant rescues cell repulsion. These results provide the first evidence that Eps15R together with clathrin control EphB/ephrinB trans-endocytosis and thereby cell repulsion.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Clatrina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Sítios de Ligação , Linhagem Celular , Chlorocebus aethiops , Clatrina/química , Endocitose , Efrina-B1/metabolismo , Células HeLa , Humanos , Camundongos , Ligação Proteica , Ratos , Receptor EphB2/metabolismo
8.
Cell ; 170(1): 172-184.e11, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28648660

RESUMO

Membrane scission is essential for intracellular trafficking. While BAR domain proteins such as endophilin have been reported in dynamin-independent scission of tubular membrane necks, the cutting mechanism has yet to be deciphered. Here, we combine a theoretical model, in vitro, and in vivo experiments revealing how protein scaffolds may cut tubular membranes. We demonstrate that the protein scaffold bound to the underlying tube creates a frictional barrier for lipid diffusion; tube elongation thus builds local membrane tension until the membrane undergoes scission through lysis. We call this mechanism friction-driven scission (FDS). In cells, motors pull tubes, particularly during endocytosis. Through reconstitution, we show that motors not only can pull out and extend protein-scaffolded tubes but also can cut them by FDS. FDS is generic, operating even in the absence of amphipathic helices in the BAR domain, and could in principle apply to any high-friction protein and membrane assembly.


Assuntos
Endocitose , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Aciltransferases/química , Aciltransferases/metabolismo , Animais , Fenômenos Biomecânicos , Fricção , Humanos , Metabolismo dos Lipídeos , Domínios Proteicos , Ratos
9.
Proc Natl Acad Sci U S A ; 113(40): 11226-11231, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27655892

RESUMO

Bin/Amphiphysin/Rvs (BAR) domain proteins control the curvature of lipid membranes in endocytosis, trafficking, cell motility, the formation of complex subcellular structures, and many other cellular phenomena. They form 3D assemblies that act as molecular scaffolds to reshape the membrane and alter its mechanical properties. It is unknown, however, how a protein scaffold forms and how BAR domains interact in these assemblies at protein densities relevant for a cell. In this work, we use various experimental, theoretical, and simulation approaches to explore how BAR proteins organize to form a scaffold on a membrane nanotube. By combining quantitative microscopy with analytical modeling, we demonstrate that a highly curving BAR protein endophilin nucleates its scaffolds at the ends of a membrane tube, contrary to a weaker curving protein centaurin, which binds evenly along the tube's length. Our work implies that the nature of local protein-membrane interactions can affect the specific localization of proteins on membrane-remodeling sites. Furthermore, we show that amphipathic helices are dispensable in forming protein scaffolds. Finally, we explore a possible molecular structure of a BAR-domain scaffold using coarse-grained molecular dynamics simulations. Together with fluorescence microscopy, the simulations show that proteins need only to cover 30-40% of a tube's surface to form a rigid assembly. Our work provides mechanical and structural insights into the way BAR proteins may sculpt the membrane as a high-order cooperative assembly in important biological processes.


Assuntos
Membrana Celular/química , Proteínas de Membrana/química , Nanotubos/química , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Calibragem , Simulação por Computador , Fluorescência , Lipídeos/química , Simulação de Dinâmica Molecular , Domínios Proteicos , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína , Propriedades de Superfície , Raios X
10.
J Cell Sci ; 128(6): 1065-70, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25774051

RESUMO

Membrane curvature is an important parameter in defining the morphology of cells, organelles and local membrane subdomains. Transport intermediates have simpler shapes, being either spheres or tubules. The generation and maintenance of curvature is of central importance for maintaining trafficking and cellular functions. It is possible that local shapes in complex membranes could help to define local subregions. In this Cell Science at a Glance article and accompanying poster, we summarize how generating, sensing and maintaining high local membrane curvature is an active process that is mediated and controlled by specialized proteins using general mechanisms: (i) changes in lipid composition and asymmetry, (ii) partitioning of shaped transmembrane domains of integral membrane proteins or protein or domain crowding, (iii) reversible insertion of hydrophobic protein motifs, (iv) nanoscopic scaffolding by oligomerized hydrophilic protein domains and, finally, (v) macroscopic scaffolding by the cytoskeleton with forces generated by polymerization and by molecular motors. We also summarize some of the discoveries about the functions of membrane curvature, where in addition to providing cell or organelle shape, local curvature can affect processes like membrane scission and fusion as well as protein concentration and enzyme activation on membranes.


Assuntos
Membrana Celular/química , Membranas Intracelulares/química , Bicamadas Lipídicas/química , Animais , Humanos
11.
Nature ; 517(7535): 460-5, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25517094

RESUMO

Endocytosis is required for internalization of micronutrients and turnover of membrane components. Endophilin has been assigned as a component of clathrin-mediated endocytosis. Here we show in mammalian cells that endophilin marks and controls a fast-acting tubulovesicular endocytic pathway that is independent of AP2 and clathrin, activated upon ligand binding to cargo receptors, inhibited by inhibitors of dynamin, Rac, phosphatidylinositol-3-OH kinase, PAK1 and actin polymerization, and activated upon Cdc42 inhibition. This pathway is prominent at the leading edges of cells where phosphatidylinositol-3,4-bisphosphate-produced by the dephosphorylation of phosphatidylinositol-3,4,5-triphosphate by SHIP1 and SHIP2-recruits lamellipodin, which in turn engages endophilin. This pathway mediates the ligand-triggered uptake of several G-protein-coupled receptors such as α2a- and ß1-adrenergic, dopaminergic D3 and D4 receptors and muscarinic acetylcholine receptor 4, the receptor tyrosine kinases EGFR, HGFR, VEGFR, PDGFR, NGFR and IGF1R, as well as interleukin-2 receptor. We call this new endocytic route fast endophilin-mediated endocytosis (FEME).


Assuntos
Aciltransferases/metabolismo , Endocitose , Actinas/metabolismo , Linhagem Celular , Clatrina , Dinaminas/metabolismo , Humanos , Ligantes , Fosfatos de Fosfatidilinositol/metabolismo , Pseudópodes/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Interleucina-2/metabolismo , Transdução de Sinais , Fatores de Tempo
12.
Nature ; 517(7535): 493-6, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25517096

RESUMO

During endocytosis, energy is invested to narrow the necks of cargo-containing plasma membrane invaginations to radii at which the opposing segments spontaneously coalesce, thereby leading to the detachment by scission of endocytic uptake carriers. In the clathrin pathway, dynamin uses mechanical energy from GTP hydrolysis to this effect, assisted by the BIN/amphiphysin/Rvs (BAR) domain-containing protein endophilin. Clathrin-independent endocytic events are often less reliant on dynamin, and whether in these cases BAR domain proteins such as endophilin contribute to scission has remained unexplored. Here we show, in human and other mammalian cell lines, that endophilin-A2 (endoA2) specifically and functionally associates with very early uptake structures that are induced by the bacterial Shiga and cholera toxins, which are both clathrin-independent endocytic cargoes. In controlled in vitro systems, endoA2 reshapes membranes before scission. Furthermore, we demonstrate that endoA2, dynamin and actin contribute in parallel to the scission of Shiga-toxin-induced tubules. Our results establish a novel function of endoA2 in clathrin-independent endocytosis. They document that distinct scission factors operate in an additive manner, and predict that specificity within a given uptake process arises from defined combinations of universal modules. Our findings highlight a previously unnoticed link between membrane scaffolding by endoA2 and pulling-force-driven dynamic scission.


Assuntos
Aciltransferases/metabolismo , Membrana Celular/metabolismo , Endocitose , Actinas/metabolismo , Animais , Linhagem Celular , Toxina da Cólera/metabolismo , Clatrina , Dinaminas/metabolismo , Humanos , Ratos , Toxina Shiga/metabolismo
13.
J Cell Sci ; 127(Pt 21): 4602-19, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25189622

RESUMO

Lipid droplets are found in all cell types. Normally present at low levels in the brain, they accumulate in tumours and are associated with neurodegenerative diseases. However, little is known about the mechanisms controlling their homeostasis in the brain. We found that GRAF1a, the longest GRAF1 isoform (GRAF1 is also known as ARHGAP26), was enriched in the brains of neonates. Endogenous GRAF1a was found on lipid droplets in oleic-acid-fed primary glial cells. Exclusive localization required a GRAF1a-specific hydrophobic segment and two membrane-binding regions, a BAR and a PH domain. Overexpression of GRAF1a promoted lipid droplet clustering, inhibited droplet mobility and severely perturbed lipolysis following the chase of cells overloaded with fatty acids. Under these conditions, GRAF1a concentrated at the interface between lipid droplets. Although GRAF1-knockout mice did not show any gross abnormal phenotype, the total lipid droplet volume that accumulated in GRAF1(-/-) primary glia upon incubation with fatty acids was reduced compared to GRAF1(+/+) cells. These results provide additional insights into the mechanisms contributing to lipid droplet growth in non-adipocyte cells, and suggest that proteins with membrane sculpting BAR domains play a role in droplet homeostasis.


Assuntos
Encéfalo/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Animais , Western Blotting , Carbonatos/farmacologia , Fracionamento Celular , Células Cultivadas , Proteínas Ativadoras de GTPase/genética , Células HeLa , Humanos , Camundongos , Camundongos Mutantes , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo
14.
Curr Opin Cell Biol ; 29: 53-60, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24747171

RESUMO

Membranes of intracellular organelles are characterized by large curvatures with radii of the order of 10-30nm. While, generally, membrane curvature can be a consequence of any asymmetry between the membrane monolayers, generation of large curvatures requires the action of mechanisms based on specialized proteins. Here we discuss the three most relevant classes of such mechanisms with emphasis on the physical requirements for proteins to be effective in generation of membrane curvature. We provide new quantitative estimates of membrane bending by shallow hydrophobic insertions and compare the efficiency of the insertion mechanism with those of the protein scaffolding and crowding mechanisms.


Assuntos
Membrana Celular/metabolismo , Animais , Citoesqueleto/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Organelas/metabolismo , Proteínas/química , Proteínas/metabolismo
15.
Open Biol ; 3(8): 130081, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23926047

RESUMO

Cytokinesis is a highly ordered cellular process driven by interactions between central spindle microtubules and the actomyosin contractile ring linked to the dynamic remodelling of the plasma membrane. The mechanisms responsible for reorganizing the plasma membrane at the cell equator and its coupling to the contractile ring in cytokinesis are poorly understood. We report here that Syndapin, a protein containing an F-BAR domain required for membrane curvature, contributes to the remodelling of the plasma membrane around the contractile ring for cytokinesis. Syndapin colocalizes with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the cleavage furrow, where it directly interacts with a contractile ring component, Anillin. Accordingly, Anillin is mislocalized during cytokinesis in Syndapin mutants. Elevated or diminished expression of Syndapin leads to cytokinesis defects with abnormal cortical dynamics. The minimal segment of Syndapin, which is able to localize to the cleavage furrow and induce cytokinesis defects, is the F-BAR domain and its immediate C-terminal sequences. Phosphorylation of this region prevents this functional interaction, resulting in reduced ability of Syndapin to bind to and deform membranes. Thus, the dephosphorylated form of Syndapin mediates both remodelling of the plasma membrane and its proper coupling to the cytokinetic machinery.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Proteínas Contráteis/metabolismo , Citocinese/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas dos Microfilamentos/metabolismo , Animais , Linhagem Celular , Drosophila melanogaster , Microtúbulos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Processamento de Proteína Pós-Traducional
16.
J Biol Chem ; 288(9): 6651-61, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23297414

RESUMO

Dynamin mediates various membrane fission events, including the scission of clathrin-coated vesicles. Here, we provide direct evidence for cooperative membrane recruitment of dynamin with the BIN/amphiphysin/Rvs (BAR) proteins, endophilin and amphiphysin. Surprisingly, endophilin and amphiphysin recruitment to membranes was also dependent on binding to dynamin due to auto-inhibition of BAR-membrane interactions. Consistent with reciprocal recruitment in vitro, dynamin recruitment to the plasma membrane in cells was strongly reduced by concomitant depletion of endophilin and amphiphysin, and conversely, depletion of dynamin dramatically reduced the recruitment of endophilin. In addition, amphiphysin depletion was observed to severely inhibit clathrin-mediated endocytosis. Furthermore, GTP-dependent membrane scission by dynamin was dramatically elevated by BAR domain proteins. Thus, BAR domain proteins and dynamin act in synergy in membrane recruitment and GTP-dependent vesicle scission.


Assuntos
Membrana Celular/metabolismo , Dinaminas/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Vesículas Secretórias/metabolismo , Linhagem Celular , Membrana Celular/genética , Dinaminas/genética , Guanosina Trifosfato/genética , Humanos , Proteínas do Tecido Nervoso/genética , Vesículas Secretórias/genética
17.
Mol Biol Cell ; 24(2): 129-44, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23154999

RESUMO

The ErbB2 receptor is a clinically validated cancer target whose internalization and trafficking mechanisms remain poorly understood. HSP90 inhibitors, such as geldanamycin (GA), have been developed to target the receptor to degradation or to modulate downstream signaling. Despite intense investigations, the entry route and postendocytic sorting of ErbB2 upon GA stimulation have remained controversial. We report that ErbB2 levels inversely impact cell clathrin-mediated endocytosis (CME) capacity. Indeed, the high levels of the receptor are responsible for its own low internalization rate. GA treatment does not directly modulate ErbB2 CME rate but it affects ErbB2 recycling fate, routing the receptor to modified multivesicular endosomes (MVBs) and lysosomal compartments, by perturbing early/recycling endosome structure and sorting capacity. This activity occurs irrespective of the cargo interaction with HSP90, as both ErbB2 and the constitutively recycled, HSP90-independent, transferrin receptor are found within modified endosomes, and within aberrant, elongated recycling tubules, leading to modified MVBs/lysosomes. We propose that GA, as part of its anticancer activity, perturbs early/recycling endosome sorting, routing recycling cargoes toward mixed endosomal compartments.


Assuntos
Antineoplásicos/farmacologia , Benzoquinonas/farmacologia , Lactamas Macrocíclicas/farmacologia , Lisossomos/metabolismo , Corpos Multivesiculares/metabolismo , Receptor ErbB-2/metabolismo , Transferrina/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Clatrina/fisiologia , Vesículas Revestidas por Clatrina/metabolismo , Dinaminas/metabolismo , Tomografia com Microscopia Eletrônica , Endocitose , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Camundongos , Microscopia de Fluorescência , Corpos Multivesiculares/efeitos dos fármacos , Corpos Multivesiculares/ultraestrutura , Transporte Proteico/efeitos dos fármacos , Análise de Célula Única
18.
Blood ; 120(15): 3126-35, 2012 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-22923495

RESUMO

Missense mutations that reduce or abrogate myeloid cell expression of the F-BAR domain protein, proline serine threonine phosphatase-interacting protein 2 (PSTPIP2), lead to autoinflammatory disease involving extramedullary hematopoiesis, skin and bone lesions. However, little is known about how PSTPIP2 regulates osteoclast development. Here we examined how PSTPIP2 deficiency causes osteopenia and bone lesions, using the mouse PSTPIP2 mutations, cmo, which fails to express PSTPIP2 and Lupo, in which PSTPIP2 is dysfunctional. In both models, serum levels of the pro-osteoclastogenic factor, MIP-1α, were elevated and CSF-1 receptor (CSF-1R)-dependent production of MIP-1α by macrophages was increased. Treatment of cmo mice with a dual specificity CSF-1R and c-Kit inhibitor, PLX3397, decreased circulating MIP-1α and ameliorated the extramedullary hematopoiesis, inflammation, and osteopenia, demonstrating that aberrant myelopoiesis drives disease. Purified osteoclast precursors from PSTPIP2-deficient mice exhibit increased osteoclastogenesis in vitro and were used to probe the structural requirements for PSTPIP2 suppression of osteoclast development. PSTPIP2 tyrosine phosphorylation and a functional F-BAR domain were essential for PSTPIP2 inhibition of TRAP expression and osteoclast precursor fusion, whereas interaction with PEST-type phosphatases was only required for suppression of TRAP expression. Thus, PSTPIP2 acts as a negative feedback regulator of CSF-1R signaling to suppress inflammation and osteoclastogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Doenças Ósseas Metabólicas/etiologia , Diferenciação Celular , Quimiocina CCL3/sangue , Proteínas do Citoesqueleto/fisiologia , Osteoclastos/patologia , Osteomielite/etiologia , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Animais , Doenças Ósseas Metabólicas/metabolismo , Doenças Ósseas Metabólicas/patologia , Reabsorção Óssea/etiologia , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Dicroísmo Circular , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Knockout , Mutação/genética , Células Mieloides/metabolismo , Células Mieloides/patologia , Osteoclastos/metabolismo , Osteomielite/metabolismo , Osteomielite/patologia , Fosforilação/efeitos dos fármacos , Ligante RANK/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Tirosina/metabolismo
19.
J Mol Biol ; 423(5): 800-17, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22922484

RESUMO

Epsin possesses a conserved epsin N-terminal homology (ENTH) domain that acts as a phosphatidylinositol 4,5-bisphosphate-lipid-targeting and membrane-curvature-generating element. Upon binding phosphatidylinositol 4,5-bisphosphate, the N-terminal helix (H(0)) of the ENTH domain becomes structured and aids in the aggregation of ENTH domains, which results in extensive membrane remodeling. In this article, atomistic and coarse-grained (CG) molecular dynamics (MD) simulations are used to investigate the structure and the stability of ENTH domain aggregates on lipid bilayers. EPR experiments are also reported for systems composed of different ENTH-bound membrane morphologies, including membrane vesicles as well as preformed membrane tubules. The EPR data are used to help develop a molecular model of ENTH domain aggregates on preformed lipid tubules that are then studied by CG MD simulation. The combined computational and experimental approach suggests that ENTH domains exist predominantly as monomers on vesiculated structures, while ENTH domains self-associate into dimeric structures and even higher-order oligomers on the membrane tubes. The results emphasize that the arrangement of ENTH domain aggregates depends strongly on whether the local membrane curvature is isotropic or anisotropic. The molecular mechanism of ENTH-domain-induced membrane vesiculation and tubulation and the implications of the epsin's role in clathrin-mediated endocytosis resulting from the interplay between ENTH domain membrane binding and ENTH domain self-association are also discussed.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Estrutura Terciária de Proteína , Proteínas Adaptadoras de Transporte Vesicular/química , Membrana Celular/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica
20.
Cell ; 149(1): 124-36, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22464325

RESUMO

Shallow hydrophobic insertions and crescent-shaped BAR scaffolds promote membrane curvature. Here, we investigate membrane fission by shallow hydrophobic insertions quantitatively and mechanistically. We provide evidence that membrane insertion of the ENTH domain of epsin leads to liposome vesiculation, and that epsin is required for clathrin-coated vesicle budding in cells. We also show that BAR-domain scaffolds from endophilin, amphiphysin, GRAF, and ß2-centaurin limit membrane fission driven by hydrophobic insertions. A quantitative assay for vesiculation reveals an antagonistic relationship between amphipathic helices and scaffolds of N-BAR domains in fission. The extent of vesiculation by these proteins and vesicle size depend on the number and length of amphipathic helices per BAR domain, in accord with theoretical considerations. This fission mechanism gives a new framework for understanding membrane scission in the absence of mechanoenzymes such as dynamin and suggests how Arf and Sar proteins work in vesicle scission.


Assuntos
Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Linhagem Celular , Membrana Celular/química , Membrana Celular/metabolismo , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química , Lipossomos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...